DioGenix Reports Positive Clinical Performance of Molecular Diagnostic MSPrecise for Multiple Sclerosis

Jan 27, 2014, 08:00 ET from DioGenix, Inc.

GAITHERSBURG, Md., Jan. 27, 2014 /PRNewswire/ -- DioGenix, Inc. announced today new data supporting the clinical validation of MSPrecise®, its proprietary next-generation sequencing (NGS) assay for the identification of patients with multiple sclerosis (MS) at first clinical presentation. The prospective study met its primary endpoint by demonstrating the ability of MSPrecise to diagnose patients with MS.  The test performed consistently with previous clinical studies, having a specificity of 82% while maintaining sensitivity comparable to what has been published for the current standard of care (p= .0027).

Over 200 subjects being evaluated for non-specific neurological symptoms that could be MS, were enrolled in the prospective, blinded clinical trial that validated the performance of MSPrecise. Each subject was undergoing a comprehensive evaluation using the current standard of care for imaging of the central nervous system (CNS) and analysis of their cerebral spinal fluid and blood. This study compared the results of MSPrecise DNA mutational analysis with a consensus diagnosis made by a panel of independent neurologists chosen for their significant clinical experience in diagnosing and treating MS. The MSPrecise interpretive scoring system provides a simple scaled score to the neurologist who differentiates patients with MS from those with other similarly presenting neurological diseases.  Thirteen MS clinical centers of excellence participated in the trial – believed to be the largest prospective diagnostic study of its kind in MS – with over 20 thought-leading clinicians consenting subjects. Results from this study will be submitted for peer review.

"MSPrecise interrogates key genes involved in the immune system of patients being evaluated for MS. The growing body of evidence indicates this next-generation sequencing assay may advance our efforts to more accurately diagnose patients with MS or other immune-mediated neurological disease," said Elliot M. Frohman, M.D., Ph.D., FAAN, Professor of Neurology & Ophthalmology and Director, MS Program and Clinical Center for MS at The University of Texas Southwestern Medical Center.

These results are consistent with two prior DioGenix studies that compared MSPrecise to published performance data for the oligoclonal banding (OCB) test and experimental controls. In a previous, mainly retrospective verification study, MSPrecise demonstrated a clear improvement in the ability to classify early-stage MS patients from those with other similarly presenting neurological diseases in comparison to OCB analysis.

"DioGenix continues to clearly demonstrate the power of MSPrecise to accurately identify patients with neurodegenerative diseases like MS. MSPrecise should offer neurologists greater insight into early disease events by exploiting the incredible biological resolution provided by next-generation sequencing.  As we are able to now more accurately measure these key early biological changes we believe we can help inform more appropriate courses of treatment for individuals who suffer from these types of immune-mediated diseases," said Larry Tiffany, President and CEO of DioGenix. "The positive results of our validation study give us a green light to initiate our pre-commercial strategy."

Individuals who present with clinical symptoms and evidence of non-specific neurological disease undergo a battery of tests in a diagnostic process that can take months or even years to complete. The diagnostic standard of care for MS includes CSF analysis using the OCB test alongside a comprehensive set of clinical tests to rule-out other neurological diseases. Unfortunately, the OCB test yields a high rate of false positive results, which can unnecessarily expose patients who do not have MS to chronic and expensive therapy that, in some cases, actually exacerbates their underlying disease. Alternatively, false negatives can delay the proper treatment of those patients who do have MS, possibly accelerating the development of permanent physical disability.

About MSPrecise®
MSPrecise utilizes next-generation sequencing to measure DNA mutations found in rearranged immunoglobulin genes in immune cells initially isolated from cerebrospinal fluid. MSPrecise would augment the current standard of care for the diagnosis of MS by providing a more accurate measurement of a patient's immune response to a challenge within the CNS. This novel method of measuring changes in adaptive human immunity may also be able to discern individuals whose disease is more progressive and requires more aggressive treatment.

DioGenix continues its sponsored research to determine if the same DNA mutation signature in patients with MS found in cerebral spinal fluid can be readily detected in blood. This research is supported by Fast Forward, a subsidiary of the National MS Society.

About DioGenix, Inc.
DioGenix is developing novel molecular tests using application-specific, high-resolution state-of-the-art technologies that measure well-established human biology. With a focus in immune-mediated neurological diseases and disorders, DioGenix combines powerful insight into clinical diagnostic pathways with proprietary technology that results in earlier, more personalized intervention and treatment. The company's lead product, MSPrecise®, has recently been validated for identification of patients that have, or are at risk of developing, multiple sclerosis. DioGenix is based in Gaithersburg, MD. For additional information, please visit http://www.diogenix.com.


Larry Tiffany

Pam Lord

CEO, DioGenix

Canale Communications for DioGenix

(301) 529-4943

(619) 849-6003





SOURCE DioGenix, Inc.